Pneumocystis jiroveci

Pneumocystis jiroveci (formerly known as P. carinii) is an atypical fungus that causes a severe and often fatal pneumonia (pneumocystis pneumonia, PCP) in immunocompromised patients 1.

Diagnosis by conventional methods

P. jiroveci cannot be cultured in vitro, therefore laboratory diagnosis has relied upon cytological staining or immunofluorescent assay. Generally however, few organisms are present within the upper respiratory tract and thus lower respiratory tract specimens such as BAL and induced sputa (in conjunction with other clinical indicators) are usually required for the definitive diagnosis of pneumocystis pneumonia.

Diagnosis by molecular methods

Recent advances in molecular methods have allowed the development of more sensitive tests for the detection of P. jiroveci DNA in a range of clinical samples.

1. Blood

Several studies have demonstrated that P. jiroveci can be detected in serum and blood product derivatives 3,4,5,6 however, due to the conflicting results obtained, the usefulness of such samples in detecting the presence of P. jiroveci remains to be established.

Its detection in peripheral blood may represent transient dissemination of P. jiroveci due to an alteration of the endothelial architecture of the lung, possibly due to prolonged treatment. Alternatively it may represent the presence of damaged organisms / DNA complexes released from phagocytic cells transiently passing through the bloodstream 3,6.

Extrapulmonary pneumocystosis, affecting organs such as the spleen, kidney and also the foetus, is a rare condition but demonstrates that the organism can be spread systemically via the bloodstream (Bazaz G et al., 1970, Boldorini R et al. 1995).
2. Oral wash

Oral washes may be useful when invasive sampling procedures are not feasible1,9,10. Several studies have compared paired oral washes and BAL samples for the detection of \textit{P. jiroveci} and although the results are mixed12, most have demonstrated similar specificity and sensitivity between the two sample types9,10,11. Antibiotic treatment prior to oral wash sampling negatively affects the detection of \textit{P. jiroveci} DNA11. Systematically collected oral wash samples may be useful in monitoring the effectiveness of treatment9.

3. Respiratory samples

\textit{P. jiroveci} has been detected using molecular methods in respiratory samples including BAL, induced sputum, oral washes and tracheal aspirates13. A study by Gupta \textit{et al.},13 investigated the detection of \textit{P. jiroveci} in respiratory samples by PCR when compared to standard microscopy techniques. BAL and sputum were demonstrated to be the most useful clinical samples. None of the nasoharyngeal aspirates tested were positive for the presence of \textit{P. jiroveci} DNA13.

Asymptomatic colonisation

Asymptomatic colonisation of \textit{P. jiroveci} has been described in immunocompromised patients with primary acute and chronic respiratory disorders including bacterial pneumonia, lung fibrosis, transplant patients and lung edema14,15,16. The detection of \textit{P. jiroveci} in these groups of patients suggests that lung tissue damage may favour colonisation of this organism14. Consequently, colonisation may represent a reservoir for person-to-person transmission in these patients14,16.

Recommended Sample types (for the detection of \textit{P. jiroveci} DNA)

BAL and sputum samples are best for the detection of \textit{P. jiroveci} to aid in the diagnosis of PCP. Where these samples cannot be obtained, there may be some value in testing oral washes, as long as PCP treatment has not already been started.

We would always advise that a diagnosis of PCP is made only after consideration of the full clinical picture.

\textit{Please contact Dr John Thomas (j.thomas@micropathology.com) or Dr Mark Collery (m.collery@micropathology.com) to discuss any aspect of the Pneumocystis jiroveci detection service.}
References

